Two-dimensional simulation of quantum well lasers

نویسندگان

  • G. Hugh Song
  • Karl Hess
  • Thomas Kerkhoven
  • Umberto Ravaioli
چکیده

We describe a two-dimensional model for quantum-well lasers that solves self-consistently the electrical and optical equations. The model includes a wavelengthand position-dependent gain function which is derived from a quantum-mechanical calculation. We have also incorporated the effects of strain into the model, through an anisotropic parabolic band approximation of the band structure from a Luttinger-Kohn k.p theory. With this model we are able to predict the lasing characteristics such as the light-current behavior, current and optical field distributions, as well as the optical gain, spontaneous emission rate and dependence of the characteristics on geometry and layer design. Examples of the utility of our approach are shown which, for instance, clearly show the benefit of strain to laser design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical ASK and FSK Modulation By Using Quantum Well Transistor Lasers

In this paper, transistor lasers (TLs) are used as an optical modulator for generation of ASK(Amplitude Shift Keying) and FSK (Frequency Shift Keying) optical signals. Our analysis is based on continuity equation, rate equations, and the theory of discontinuity of quasi-fermi level at the abrupt junction. Our simulation results indicate that, the specification of ASK and FSK optical signals, ar...

متن کامل

Modulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers

Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...

متن کامل

Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser

In this paper, we present an analytical model to analysis the kirk effect onstatic and dynamic responses of quantum well heterojunction bipolar transistor lasers(HBTLs). Our analysis is based on solving the kirk current equation, continuityequation and rate equations of HBTL. We compare the performance (current gain,output photon number and small signal modulation bandwi...

متن کامل

Design Optimization for 4.1-THZ Quantum Cascade Lasers

We present an optimized design for GaAs/AlGaAs quantum cascade lasers operating at ‎‎4.1THz. This was based on a three-well active module with diagonal radiative transition. This ‎was performed by modifying the existing model structure, to reduce the parasitic anticrossings ‎‎(leakage currents) as well as the optical gain linewidth. While the gain FWHM was reduced by ‎more than 50% the gain pea...

متن کامل

Temperature Effect on THz Quantum Cascade Lasers

A simple semi-phenomenological model, which accurately predicts the dependence of thresholdcurrent for temperature of Resonant-phonon three well quantum cascade laser based on verticaltransitions is offered. We found that, the longitude optical phonon scattering of thermally excitedelectrons is the most important limiting factor for thermal performance of high frequency THz QCLs.In low frequenc...

متن کامل

Energy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes

In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Transactions on Telecommunications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1990